

TASK ALLOCATION ALGORITHMS WITH
COMMUNICATION COSTS CONSIDERED

Jon Quarfoth, Andy Korth, and Dian Lopez (Advisor)
Computer Science Department

University of Minnesota, Morris
Morris, MN 55112

quar0020@morris.umn.edu
kort0061@morris.umn.edu
lopezdr@morris.umn.edu

Abstract

 This paper studies the effect of variable communication times for a parallel task
scheduling problem. The problem involves taking a large job that is divided into
dependent tasks and finding a way to schedule the tasks among a group of networked
computers with the goal of completing all of the tasks in the least amount of time. We
model the problem using precedence graphs to represent tasks which depend on one
another. The problem is an NP-hard problem, meaning that finding optimal solutions for
cases in which the job is split into many tasks requires trying all combinations and takes
an unrealistic amount of time. This research focuses on finding approximation algorithms
that will solve the problem quickly and still produce results that are close to optimal. This
year, we developed 2 approximation algorithms which are returning very promising
results on this problem.

 1

Introduction

 Many computational tasks may be divided into smaller tasks which can be
distributed to multiple processors to reduce the time needed to solve the given task. Thus,
there exists a need for methods and algorithms to schedule these tasks across multiple
processors. However, certain tasks need to be preceded by other tasks whose results will
need to be known before beginning the computation on that given task. To further
complicate the scheduling, each smaller job could take a different amount of time to
complete and have a different amount of data, thereby affecting the time required to send
the task to another processor.

 A simple example of a computation that may be split up into smaller parts and
distributed across multiple processors (or machines) is the summation of a large set of
numbers. Given ten thousand numbers and four processors, one can simply send two
thousand five hundred numbers to each of the four processors. Each processor would be
responsible for calculating the sum of their set and then returning a single answer to the
processor that delegated that task (see Fig. 1). Of course, the total sum cannot be
computed until each processor has completed their task. This is a very simple example of
a problem which our algorithms could schedule.

Figure 1
Example of a large summation being split into smaller tasks that can run independently

 2

 When scheduling a series of tasks which are dependent on each other, there are a
number of issues that need to be taken into consideration. For a given set of these jobs,
we will need to determine which tasks must be scheduled before others. This research
does not concern itself with the actual determination of precedence for real-life problems.
Instead, we are only concerned with the scheduling of a job and not the job itself. The
problem has been generalized so that any problem that can be split into a series of tasks
where the time taken to execute a given task is known can have a solution approximated.
The algorithms have been improved from previous cited research [1] to take into
consideration a communication time that will differ for each task. This more closely
approximates real life scheduling problems because each task will need a different
amount of information before the task can be run. The amount of information a task
needs to be sent before it can run determines the size of a particular communication time
in the problem.

 The problem of scheduling tasks is NP-hard. The number of possible solutions
that must be investigated to find the best-case grows very rapidly and exponentially. This
research included the development of a brute force algorithm which would try every
possible method of scheduling in order to find the optimal solution. Because this amount
of time is completely unreasonable for actual task scheduling, approximation algorithms
have been developed. While they do not provide the optimal solution, they provide an
excellent approximation of the optimal schedule in polynomial time.

Constraints on the Problem

 The first constraint on the problem of parallel task scheduling is communication
time. Communication time is the focus of this research. Communication time is incurred
when the processor is spending time either sending information out to another processor
or receiving information from another processor. Previous research simplified the
problem by assuming communication time was constant for all tasks. This is clearly not
the case in real-life situations. With the addition of communication time to scheduling
algorithms, a better approximation of the optimal solution is expected. Sending an
enormous array of integers for summation will take significantly more time than sending
a single integer.

 Very few practical tasks can be modeled using a constant communication time. In
order to make this research practical, communication must be modeled as a variable.
Storing communication time as a constant severely limits the sort of problems that can be
modeled. A constant communication time would imply that every task in the node needs
the same piece of data before it can begin working. In a practical scenario, a task might
hand off many pieces of data to many different processors. For example, perhaps a
company has an online job application process and the data produced is sent through a
parallel system. When an application comes in, it is parsed by a processor, which then
hands off relevant bits to other parts of the system. One processor might only need a
social security number to run a background check, whereas another part of the system
might need everything in the file to put into the company's applicant database.

 The second constraint on our problem is latency. Latency is a measure of the time

 3

from when a processor begins sending a communication and the receiving processor
begins receiving the communication. Latency is an important consideration because a
processor will not receive information as soon as another processor sends information to
it. Unlike communication time, latency time can be 'absorbed'. Consider the situation
where CPU 1 has a very long task and CPU 2 had just completed a shorter task and wants
to send information to CPU 1. In a normal situation, CPU 1 would wait idle until it began
receiving the communication that CPU 2 was sending to it. Only then would it be able to
spend some time processing the communication and then execute the task. However, in
this situation, CPU 1 is still computing the result of a different task while the latency time
would be in effect. Thus CPU 1 could begin processing the communication from CPU 2
immediately (See Fig. 2). Task 1 receives the data, but cannot process it until it finishes
executing Task 1. This models how a system buffers incoming data.

 Also consider the situation where a processor has completed a task but cannot
move onto a new task because it does not have the prerequisite information. This is the
case in Fig. 4. CPU 1 has completed its current task, but cannot begin its next task until
receiving a communication from CPU 2.

 4

 When two consecutive tasks are scheduled on the same processor, no
communication or latency time is incurred. That processor already has the information it
needs to begin processing the next task. (In some cases, that task would require
information from an additional task before beginning.) As a result, certain jobs can be
scheduled on a single processor and be completed in less time than if the job was spread
over multiple processors. For example, consider our sum of a large number of integers.
Sending these numbers over a slow network connection (high communication and latency
costs) to be calculated and then waiting for the response would almost certainly take
longer than just having the originating processor sum the numbers itself. That being said,
scheduling linked tasks on the same processor to eliminate communication and latency is
a powerful tactic in our approximation algorithms.

Representation of the Problem

 A precedence graph is used to represent the problem of scheduling tasks on
parallel processors. A single graph will correspond to a larger job which has been divided
into a series of tasks which may be handled separately. Each of these individual tasks is
represented by a node on the graph, where each task has an execution time, representing
the amount of processor time needed to complete that task. The edges on the graph are
used to indicate which tasks depend on the other tasks. The edges between the nodes can
also be thought of to represent the communication that occurs between the tasks.
Therefore, each edge contains a communication time, which represents the amount of

Source
Node

Sync
Node

Node
B

Node
A

Figure 5
An example of a simple precedence graph.

 5

time that is taken sending the prerequisite information for that task to be run.

 The graph itself is a directed acyclic graph; each edge's direction denotes which
node needs the other node to be completed before it can be run. For example, in Fig. 5 on
the next page, the source node must execute before Nodes A or B can execute. Likewise,
the sync node cannot complete until Nodes A and B have completed. A single root node,
called the source node, serves as a starting point for each graph. A sync node has been
generated at the bottom of each graph. The sync node is where the task completes itself;
it is always the last task to be executed and it is always run on the same processor as the
source node. These additional constraints make the problem more applicable to actual
scheduling situations (We usually want the solution to be returned to the computer which
began the calculations). [3] Our approximation algorithms are given one such directed
graph and will calculate a schedule for the tasks it represents.

Approximation Algorithms

 The approximation algorithms are intended to return a near-optimal solution in a
very short amount of time. Since optimal solutions are so time-consuming to find, we
sacrifice a small amount of accuracy in our schedules for an enormous time savings. A
given schedule includes information on the order in which the processes are to be run and
which processor is responsible for each task. The algorithms have to take into
consideration when a processor will send out a task, because this process occupies the
CPU just as much as actually executing a task.

 There are many strategies to making good approximation algorithms. One thing
we always take into account is to make sure that each task communicates out to other
processors in a timely manner. I'll use Figure 5 as an example, let us say that Node A and
the Source Node are scheduled to CPU 1 and Node B is scheduled to CPU 2. Once the
source node finishes execution, it needs to communicate information to Node B before
Node B can begin execution. Since Node A is on the same CPU as the source node, no
communication is necessary before it can run. In cases like this, it is important to send out
communications to all waiting nodes before executing things on the same processor. If
Node A is executed before Node B, CPU 2 will sit idle waiting for a communication. It
was proven [3] that it is always faster to communicate tasks out in this fashion. This is
illustrated on the next page in Fig. 6

 6

 Another strategy, mentioned earlier, is to keep dependent tasks running on the
same processor. By keeping dependent tasks on the same processor, communication and
latency times can be nullified for a particular edge of the precedence graph. This is
because if a task is being executed on the same processor as its parent, there is no need
for communication. The process already has the information it needs. These 2 concepts
have become the base rules behind all of our successful approximation algorithms to date.
We have developed 2 strong algorithms this year, both based on these strategies. These
are the Longest Path 2 algorithm, and the Longest Communication Path algorithm

Longest Path 2 Algorithm

 Our first algorithm is a modified version of the Longest Path algorithm developed
in 2003 by Joel Nelson and Daniel Wespetal [2]. We call it the "Longest Path 2"
algorithm. The original version of the longest path algorithm didn't take our first strategy
into account. The CPUs would sometimes run tasks of their own before sending out
information to waiting processors, causing processors to sit idle. Our research team
spotted this bug and fixed it; we now believe that this is one of our better approximation
algorithms. The algorithm will look only at the execution times of tasks, and choose the
path down the graph with the highest execution time. Here is some pseudo code for this
simple, yet powerful algorithm:

1. Until all nodes are scheduled:

a. Find all the nodes that have no parents, or have only parents that have already
been scheduled.

b. Calculate the longest path of execution times down the graph from each of
these possible start nodes.

c. Of these calculated paths, take the longest path of these paths calculated from

Figure 6
Top: CPU 1 sends out a communication before executing Task 1

Bottom: CPU 1 sends out a communication after it executes Task 1

Task A

CPU 2

CPU 1 Comm
Time

Latency
Time

Task B

Task A

CPU 2

CPU 1

Comm
Time

Comm
Time

Latency
Time

Comm
Time

Task B

CPU Idle

 7

the start node.
d. Schedule all these nodes to the next unused processor, starting at 0 and

incrementing each time through.

Longest Communication Path Algorithm

 Our second algorithm took the concept of the Longest Path Algorithm and applied
it to the communication times of the graph. We find the longest communication pathway
down the graph with this algorithm. By following this process, we are attempting to
minimize the communication and latency times, by nullifying the ones that are greatest.
Nodes always have to execute, but communication and latency can be nullified, so we try
to nullify the greatest sources of communication time with this algorithm. This algorithm
is currently our best algorithm for solving graphs with variable communication times.
The pseudo code for this algorithm is almost identical to the last algorithm:

1. Until all nodes are scheduled:

a. Find all the nodes that have no parents, or have only parents that have already
been scheduled.

b. Calculate the longest path of communication times down the graph from each
of these possible start nodes.

c. Of these calculated paths, take the longest path of these paths calculated from
the start node.

d. Schedule all these nodes to the next unused processor, starting at 0 and
incrementing each time through.

Generating Results with the Test Bed

 Our test bed is where we compare our algorithms. The test bed consists of a large
number of randomly generated precedence graphs. These graphs are created and stored so
that each algorithm will be tested on the same set of graphs. This makes comparison
between algorithms easy and keeps all of the project data well-organized. Previous
researchers working on this project populated the test bed with graphs and ran brute force
algorithms on them in order to obtain optimal and worst-case times. However, these
graphs did not model communication time being variable. The test bed had to be
expanded with a new set of graphs for this project, and new brute force data needed to be
generated.
 Graphs are stored in the test bed as XML data files. These files are human-
readable, and can be constructed by hand or by our random graph generator tools. The
results that were gathered for this project consist entirely of randomly generated graphs.
Our graphs were split into categories based on the number of nodes in each graph. Graphs
were generated with 4 to 11 nodes. Edges were added randomly, and communication
times and execution times were added randomly. Each graph also has a randomly
generated latency. All times were randomly generated within specified ranges. Execution
times ranged from 1 to 1000, Communication times ranged from 1 to 250, and latency
times ranged 1 to 75.

 8

Algorithm Results

Figure 7
A comparison of algorithm results

 As you can see on the graph, the Longest Communication Path algorithm gives
better times than the Longest Path 2 algorithm. The difference may not seem important at
a glance; however, algorithms tend to diverge from the optimal solutions at a fairly
constant rate. Since the rate at which the Longest Communication time algorithm
diverges from the optimal solution is smaller than that of the Longest Path algorithm, it
will become an increasingly relevant difference as the number of nodes becomes large.

 The fact that the Longest Path 2 algorithm does so well in this new environment
with variable communication times is impressive, and speaks well of its original creators.
The fact that the Longest Communication Time algorithm does better than the Longest
Path algorithm is no real surprise, however; the designers of the Longest Path algorithm
never had to deal with variable communication times. They could not have used a
Longest Communication Time algorithm if they had wanted to - all the edges in their
graphs had the same communication times.

 The most significant result from the table is how close to optimal our approximate
solutions are. Both of the algorithms are obtaining very close to optimal results. We
added an entirely new variable to our graphs, and yet even our older algorithms can still
hold their ground. This is a great victory for us - it tells us we've been pointed in the
correct direction

4 5 6 7 8 9 10 11
0

1000

2000

3000

4000

5000

6000

7000

8000

Algorithm Com parison

Longest Path Longest Commu-
nicat ion Time

Opt imal Worst -Case

Num ber of Tasks

A
ve

ra
g

e
 T

ot
al

 C
om

p
le

ti
on

 T
im

e

 9

Future Research

 In the next year we plan to bring our theoretical research into a practical
environment by implementing a parallel computing system using the Message Passing
Interface (MPI) interface. Right now, our research is purely theoretical. In order to bring
our research to the next level, we need to prove that our theoretical implementations work
in a real-world environment. Parallel computing is starting to take off right now. The
fastest supercomputer in the world, IBM's BlueGene, uses MPI to communicate between
its 60,000+ processors. There are currently very few tasks suitable to be run on a platform
such as BlueGene. If more efficient ways can be found to schedule jobs in a parallel
environment, it could open up many new directions for parallel computing.

 We plan on first doing research on the MPI protocol, and finding an
implementation suitable to our needs. After that, we will find a problem that we can adapt
for a parallel environment, and integrate it into an MPI environment. We hope to model
actual problems and use our approximation algorithms to come up with appropriate
schedules for running them in parallel on networked machines.

 As always, we plan to improve our approximation algorithms even more. We
should be able to do some simple optimization by analyzing our data. We already have
some ideas on how we can do this. First, we can compare our results for each graph to the
optimal solutions and figure out which cases we did worst on. We can then use this data
to figure out what special cases we may have missed in our code. Right now our code is
very general and getting down to more specific cases should help us optimize existing
code or develop ideas for new algorithms.

 We also have ideas for algorithms that incorporate more variables. Right now,
both of our best algorithms are very narrowly focused. One only looks at execution times
and the other only looks at communication times. They work very well for what they are,
but the best algorithms should look at a combination of these two factors and judge the
schedule accordingly. For example, looking at factors such as whether the
communication time is greater than the execution time. In that case, a task should always
be scheduled on the same processor as its parent node, because time would be lost to
communication if it is put on a different processor.

Conclusions

 The added variable of communication in our problem changes the applications of
the task allocation problem greatly, and allows us to model many more situations than we
could previously. The fact that our algorithms still return near-optimal results on this new
instance of the problem is a great victory for our research team. Our goals were to add in
the variable communication and latency, (which involved rewriting a lot of code from
scratch to properly implement) and improve our scheduling algorithms. We succeeded on
both accounts. We now have a more practical model for our problem, and a more
efficient way of scheduling it.

 10

References

[1] Adeola Adewola, Jon Quarfoth, Dan Wespetal, and Dian Lopez (Advisor),
"Development of a Test Bed to Determine Performance of Scheduling Algorithms,"
Proceedings, Midwest Instructional Computing Conference (MICS), Morris, April 2004.

[2] Daniel Wespetal, Joel Nelson and Dian Lopez, "Approximating a Parallel Task
Schedule using Longest Path," Proceedings, Midwest Instructional Computing
Conference (MICS), Duluth, April 2003.

[3] Hsu, T.s., Lee, J., Lopez, D.R., and Royce, W., "Task Allocation on a Network of
Processors," IEEE Transactions on Computers, Vol. 49, No. 12, pp. 1339-1353,
December 2000.

